下一代传送网的技术发展趋势浅析

下一代传送网的技术发展趋势浅析,第1张

下一代传送网的技术发展趋势浅析,第2张

关键词: 下一代传送网的技术

  摘要: 下一代传送网的技术发展趋势浅析

  一、引言

  传送网是整个电信网的基础,它为整个网络所承载的业务提供传输通道和传输平台。随着近年来电信业务对带宽需求的不断提高,光传送网络的规模在不断扩大,为业务网提供了巨大的带宽资源,同时在网络的生存性、可扩展性方面也有了巨大的进步。

  作为网络的传送层面,下一代传送网的目标就是为了满足下一代网络的传送需求。结合下一代网络的特征,如基于分组技术,能够提供包括电信业务在内的多种业务,在业务相关功能与传送层传送相关功能分离的基础上,能够利用多种宽带、有QoS支持能力的传送技术等方面的特征,下一代传送网应当满足从分组到波长的传送需求,同时支持多种业务:利用高速率、大容量的传送技术提供充足的带宽资源;具有端到端的业务等级和透明的传输能力;引入控制平面,解决网络智能性和动态性的结合,同时提供与传统网络互通的能力。总之,下一代传送网的特征将随着下一代网络和业务的发展而逐步明确,与业务的密切结合是下一代传送网的一个重要特征。

  发展到今天,光传送网已经在带宽和容量上能够满足业务网的需求,起码在技术上已经不是不可解决的问题,需要考虑的则是投资与回报的关系等运营方面的问题。下一代传送网应该向什么方向发展呢?对于下一代的说法,可谓是仁者见仁,智者见智的问题,在不同时期有不同的内涵。综合近年来的发展,一般认为下一代光传送网的技术趋势主要体现在以下几方面。

  二、传送网的智能化

  目前,无论是制造商还是运营商都一致认为传送网智能化是传送网发展的方向之一。这是由于近几年来,随着IP业务的爆炸性增长,对网络带宽的需求不仅变得越来越大,而且由于IP业务量本身的不确定性和不可预见性,对网络带宽的动态分配要求也越来越迫切。主要靠人工配置网络连以优化网络资源连接的原始方法耗时费力、容易出错,不仅难以满足现代网络和新业务拓展的要求,也难以适应市场竞争的需要。于是,一种能够自动完成网络连接的新型网络概念——智能的自动交换光网络(ASON)应运而生。ASON是利用独立的控制平面来实施动态配置连接管理的网络,而过去传送网只涉及客户层信号的传送、复用、交叉连接、监控和生存性处理,通常不含交换功能,只具备较低的智能。因此,在传统的传送网中引入动态交换的概念不仅是几十年来传送网概念的重大历史性突破,也是传送网技术的一次重要突破,使传送网具备了自动选路和管理的更高智能。而且,这类新型网络的一个重要特点是支持多种客户信号,是一种独立于客户和技术的网络。

  ASON指的是以SDH和光传送网(OTN)为基础的自动交换传送网,它用控制平面来完成配置和连接管理的光传送网,以光纤为物理传输媒质,SDH和OTN等光传输系统构成的具有智能的光传送网。根据其功能可分为传送平面、控制平面和管理平面,这三个平面相对独立,互相之间又协调工作。

  与传统传送技术相比,ASON技术的特点是引入了控制平面,控制平面的主要功能是通过信令来支持建立、拆除和维护端到端连接的能力,并通过选路来选择最合适的路径,以及与此紧密相关的需要提供适当的名称和地址机制。

  目前,ASON设备指的是在大容量交叉连接设备或MSTP设备为传送平面,内嵌控制平面而成的设备,可以是光或者电产交叉矩阵,基本上以光电光交叉连接矩阵为主,只有少数厂家支持全光矩阵。其中,控制平面采用内嵌或外置的方式实现,初期部分厂商采用外置方式将控制平面移植到传送平面的设备上,逐步形成内嵌的控制平面。目前,ASON网络中的各种接口尚不成熟,UNI接口的标准由OIF开发,UNI 1.0的互操作性演示已经进行过了,UNI 1.0 Release2的互操作性试验也将于2004年6月进行。E-NNI的规范由0IF正在进行规范,将于2004年6月进行互操作性演示。I-NNI的规范正在开发,各厂家采用私有方式实现的可能性更大一些。目前的ASON设备可以通过集中或分布式的保护恢复方式来提供多种级别的业务,同时能够提供一些智能化的业务,如端到端的业务配置、SLA等,有利于网络的运行、维护和管理。总之,ASON设备的现状是以关注功能为主,对于协议一致性和接口等的互通性方面的追求并不是关注的重点。

  从网络演进来看,ASON网络主要有两种演进的模型,分别是重叠模型和对等模型,重叠模型是ITU,OIF和ODSI等国际标准组织和准标准组织所支持的网络演进结构。基本思路是将光传送层特定的控制智能完全放在光传送层独立实施,无须客户层干预,客户层和光传送层成为两个基本独立的智能网络层,而光传送层将成为一个开放的通用传送平台,可以为包括IP层在内的所有客户层提供动态互联。这种模型有两个独立的控制平面,一个在核心光网络,而另一个在客户层,两者之间不交换路由信息,独立选路,限度地实现了光网络层和客户层的控制分离。它的优点是:实现统一透明的传送平台,支持多客户层信号;传送层完成客户的连接要求可以屏蔽光传送层的网络拓扑细节;允许光传送层和客户层独立演进,这样光传送层可以继续快速演进;采用子网分割后,运营者既可以充分利用原有基础设施,又可以在网络其他部分引入新技术;采用这种方式后,在网络运营商和客户层信号间有一个清晰的分界点。缺点是:功能重叠,两个层面部需要有网管和控制功能;扩展性受限,为了实现数据转发,需要在边缘设备间建立点到点的网状连接,管理两个独立的物理网的成本较高,带宽利用率较低,存在额外的帧开销;两个层面存在两个分离的地址空间,因此需要复杂的地址解析。目前,这种模型最适合那些传统的已具有大量SDH网络基础设施而同时又需要支持分组化数据的网络运营商。

  对等模型是IETF支持的网络演进结构,是一种集成的方式,基本思路是将IP层用于MPLS通道的选路和信令略作修改后直接应用于光传送层的连接控制。特点是将光传送层的控制智能转移到IP层,由IP层来实施端到端的控制。这种模型的优点是:光传送网和IP网可以看作一个集成的网络,维持单个拓扑,光交换机和标记交换路由器具有统一的选路区域:两者之间可以自由地交换所有信息并运行同样的选路和信令协议,实现一体化的管理和流量工程;统一的控制面可以消除管理的复杂性。缺点是:这种模型难以支持传统的非IP业务,失去了对业务的透明性;为了实现路由器对光传送层的全面控制,必须对客户层开放光传送层的网络拓扑等细节;光层面的物理大故障(例如光缆切断)会导致光开关的频繁动作,不仅使路由器选路工作量负担过重,还会影响路由稳定性;难以形成统一的选路和保护恢复控制,这种模型使IP和光传送层之间有大量的;状态和控制信息需要交换。这种模型较适合那些新兴的同时拥有光网络和IP网的ISP运营商。从长远看,也适合于传统的电信运营商。从网络应用来看,骨干网目前采用大量的环网和点到点系统,只是部分采用了数字交叉连接设备。随着传送网向网状网演进的趋势越来越明显,通过映入智能光网络技术来增强网络的生存性,同时提高光通道的调度效率,并提供差异化的长途传送服务,通告网络的可维护性和可管理性。同时,可以在局部网络引进部分ASON设备,首先在域内实现部分的ASON功能,在设备和技术成熟之后逐步向扩展。城域传送网是ASON网络应用的一个较好舞台,目前城域传送网主要以环形拓扑为主,业务基于保护实现,故障保护时间为50ms.随着城域范围内数据业务越来越多,网络的目标恢复时间延长,业务的突发性和不可预见性增强,主要的应用是通过多种保护方式提供多种等级的业务,解决电路调度频繁、开通实现紧急、电路需求的不确定性等问题。综合认为,ASON设备会首先在城域核心层引入,逐步向汇聚和接入层扩展。

位律师回复
DABAN RP主题是一个优秀的主题,极致后台体验,无插件,集成会员系统
白度搜_经验知识百科全书 » 下一代传送网的技术发展趋势浅析

0条评论

发表评论

提供最优质的资源集合

立即查看 了解详情